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TWO CLASSES OF KITION OF THE KOVALEVSKAIA TOP' 

A.I. DOKSHEVXCH 

The motions of the Kovalevskaia top /I/ is studied for the case when the ultraellip- 
tical integrals degenerate to the elliptical integrals /2-6/. The Appel'rot term- 
inology is used to investigate the fourth class of simplest motions of the body,and 
one particular case belonging to the third class. The mathematical apparatus 
developed by Kovalevskaia is not used directly. An elementary transformationofthe 
initialEuler-Poisson equations is used as the basis of the investigation. ‘1% i c 

yields explicit relations connecting all unknown variables with time, and these in 
turn are used to show the genexal laws governing the motions. The motions can he 
divided into the oscillatory and asymptotic motions, depending on the initial para- 
meters. The Bobylev-Steklov motion or its particular case of a body rotating about 
a fixed axis as a physical pendulum, represents the limiting mode for allasymptot-:~ 
motions. 

1. Transformation of equations. Under the Kovalevskaia conditionstheEuler--Pciss~,n 
equations and their algebraic first integrals are usually written in the form 

dP dq dr 
2dt = pr, Z";ii- = - tp-- y"'. ;ii- = 9 

.$ = y'r - y’q, J$ = y”P - yr, 
W 

z = 74 - Y’P 

2(pZ -t y*) + r* - 2y = 61,, 2 (~7 + 9~') + 77' = 21, I' + 7" -t Y" -- 

(P' -v" + v)* + (2pq + r')' = k2 

(1.1) 

(1.2) 

To start, we carry out the following linear change of the phase variables: 

z,=pjf/Z-a, rJt=9.1/2. z,=r/u’z, al==y+ap)19--az~ (1.3) 

pi = y* + q $4 ( 7% = yn + arf r/z, 5 = i/i/z 

where (1 is an arbitrary parameter. In the new variables the system (1.1) and the integrals 
(1.2) can be written in the form 

Next we carry out the nonlinear transformation 
tl = - l,lW1-l. Y* = - y,lW,-1, z2 = z, -+- 2y,.?,M,-'. y* = y,M,_'. 
iw, = 512 + Y? # 0 
CL2 = -a, + 2(2," - yI")ylWM,-'- _Wz,"M,-1, 
3?== - flI + 41-,y,y,W,-e- 2a%+y,M,-' 

The transformation is symmetric and equations (1.4), (1.5) become 

(1.5; 
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(1.6) 

(1.7) 

Let m,‘+ K;dfO. We introduce another parameter h. putting 5% = 4K,,ab = 2m,. It is clear 

that real o and b satisfying the above relations exist. We find that using the transformation 

*,u'F= 12, -t- n, Ys 65-= Xy,, 
dg = a* - ahz,, ys = Ay, - (I+, 

z;fv%$t$e" = Bn - ahY* 
3 

we convert (1.6) into (1.1). Thus we see that the structureoftheabovethreetransformations 
does not alter the form of the Euler-Poisson equations. Assume that 

nz& = 0, Ki = 0 (1.8) 

Since dK,/da = - 2m,, the conditions adopted mean that the polynomial K,(a) has a multiple root. 
Eliminating a, we obtain a unique constraint imposed on the initial parameters. Using the 

conditions (1.8) we obtain, from (1.6) (neglecting for simplicity the indices accompanying the 
variables and denoting the differentiation with respect to T by a dot) 

2' = YZ, y' = - 22 - y, 2' = j3 (1.9) 

a' = Zz~, 6' = - 2zor -a%, y' = ay - @z 
21 ---a = h,, (% f 03) z + BY i" yz ='&I, al + f? + .2a = E, 
a (P - Y2) + 2&Y - 9 + .%Z ='/a 

2. Integration of the auxilliary system. The phase variables P,....Y" of the 
initial equations are known rational functions of the quantities x,.. . , yg. Therefore under 
the conditions (1.8) the problem is reduced to that of finding the solutions of the system 
(1.9). We note that the set of equations 

2‘ = b, a‘ - Zzp, @' = - 2.4 - 0% (2.1) 

forms a closed subsystem. Both its integrals are already known: P - a = h,, a* + B? -- a%2 = 1. Let 
us clarify the dependence of ~,a,$ on time. Clearly, 

i.2 = - ;a -j- (Zh, - fl%) 2% + 1 - hl* = (2X - R,) (R, - 2') 
R *,* = k, - ‘/& f k, R,R> = h,2 - 1. 

h, d 1, 0 ( 2% < f-t,; h, > 1, 0 < R, < 22 < R, 

For z to be real, it is necessary and sufficient that R,>O. In what follows, we shall use a 
different form of the solution of the subsystem (2.1). Its integrals imply fv is an auxil- 
liary quantity) 

Let us find .z, Y and y, noting the important relation 

y" <- (22 + a) Y = 0 

We find that the above linear equation is satisfied by the expression 
r = H*y -I/* ar (H, = h, -a") 

and we have 

r" -i- H,HSyZ = ‘/,hlN, I”y -- l’y’ = -‘:rh, 
N,=Gh,-1, N=:=-ffl 

Let us assume that ,'V:,O. Then (2.2) yields 

(2.2) 

(2.3) 

(2.4) 
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Below we give another relationship for finding =,y and ;: 

!f,'~V,*r-~['a+ N,ff,<* = k,. F, = (z $ l/>nH1-l) :Y,-“1 

.v, = ;2 - H,H,-’ > 0, 8, = k,Z - * 

We can now give a complete classification of the solutions depending onthe values of 

IL‘. :: 

(d special case where h'and N, have opposite signs); 49. II, = 0: ‘2”. If, = 0: $0. II, = Il. 

We have eight distinct cases. Equations (2.3) and (2.5) yield the solutions for the 
first four cases 

3O. The calculations follow those of case 2O, but the sign of H,is different. 

5O. Under these conditions both .Yand X, change their sign with time, thereforo the 

equations (2.3) and (2.5) are no longer suitable. We shall use the relations (2.2), noting 

that 
1.' _ ff, .Y (1: a =. ~“2 cos~,i - ho2 sjn2 t+, ~2 = k ., ‘..d. Of = k - ‘I+’ 

Let us write the first equation of (2.2) in the parametric form 

The second equatron of (2.2) yields 0. = -a& (L .! If1(':)-1. When Ii,> 0, the quantity : has d dc- 

finite sign. We can assign the plus sign to it without loss of generality. We then find that 

the quantity C' is negative and hounded. 
6O. In this case the relation _'. (zz a): =- 0. holds, and yields rapidly the values of 

1.4' and y 
1.r : Ii& - x -- I.~, Iy = --23 - 2:r,, f.y = zuz + 2p,, _ ii ..f :h,- 1 

I il .; ii I‘ I; : : 2 >. I.1 

7o. In this case we have the relation (cub 11)' -i (3 -, ~1 cos q = e, and we obtain 

I.7 -. F(1 -- /I1 : ‘I,> I, C$,, 9, I.;: /.,. - !~cosy, IT- - La: L 1h ‘I 1. = 21. (02 - 1;,1. I -i.;, $2 = CO>? ‘, ._ 0 

8O. The solution is obtained using the elementary methods. 

(,=.= a + :u, Ly = &C-l + u'. Ly = _(‘_ fL':-' - n: 
U.2 = "2 - 1 

z.2 
= 2% (a,’ - :‘j. *,2 cz 2. _ cl!, I. = 2 (02 - k,) 

3. Investigation of the motion. The solution of (1.0) has been constructed. 1;y 

virtue of the symmetrical character of the second transformation and the linearity of rhC first 

transformation, we cdn express the unknown variables p....,;” very simply in temS Of r2 y2. In 

the case of a quantitative investiqation, it is sufficient to note that the expressions a r C 

rational functions with unique denominators which never vanish. The motions of the top ccfn be 
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separated into two types of motion. The first type motions are oscillatory and obey the con- 

dition HJ#~>(J. In all the remaining cases H&$O and the motions are asymptotic.TheBobylev 

-Steklov motion determines the limiting mode. Indeed, for the given conditions we find that 

z*-m,y,-co. yl-.+~,and hence p-+const, g-0, ~;'+rp-O as C-CO, which characterizes only the 

motion in question. We shall indicate a connection with the classical study of Kovalevskaia. 
The conditions m,=O, I<,=0 are the conditions for the roots of the polynomial T(S) to be multi- 

ple. The equations H,,==O (v= 1, 2.3) construe the conditions of additional multiplicity of the 
roots of the polynomial F (s). 

4. Second class of motions. We consider the motion of a top under the constraints 
I = 0, 31, = k. This represents according to Appel'rot a particular variantofthesimplestthird 
class motions. Starting directly from the Euler-Poisson equations, we introduce three new 
variables 0.9 and O, as follows /7/: 

2p=psin8. I‘ = O 00s 8, y + p2 - q3 = k eos Zrp, y' + 2pq = - k sir1 2q (4.1) 

Calculations yield 
8' = * + kp-tsinflsin 2e, 29' = p 00~8 

Using the known integrals, we obtain the required equations for determining q and O 

29"CosO $-Cl'*--331,sinOCos"B -+- 
(911*-ka)(2-_1.5sineO) 21 

31,f kcm 2rp +p=o (4.2) 

2~'~ = cc& 8 (31, - k + 2k cosPq) (4.3) 

When t=O and 31,= k, equation (4.2) can be integrated to yield 

e** = 00s e (E - 31, cos Cl), E = const (4.4) 

Taking the integrals into account, we find that E'=Q i. 
Let us indicate certain simple, but important inequalities. In the nontrivial case we 

have [,>O. From (4.4) it follows that if E=+ i. then 00s O >, 0, and if &=--I, then c0sOgo. 
Thus ~0~9 retains its sign during the motion and this implies that r has a definite sign. We 
can put i>O, i.e. r:=+-1, without loss of generality. Let us now find cp. Assume that at 
some time p=O. Then r= 0,~ =O,y' =O. Such initial conditions characterize a rotation about 
a fixed axis only, therefore we shall assume that p+O. Then from p*= 4kcos21p it follows that 
00s 9 + 0. We can assume without loss of generality that coscp>O. Further, using the fact that 
r = 2rp.I we find that v'>,O. It follows that we can simplify (4.3) to obtain 

~p’=pCO~IpCOSe, p’=k, p>O 

The substitution 

f 
cosp= Okr 1. sincp=thr,, r1 = p 

s 
COS~~T + coast 

is expedient. 

5. Solution of the Euler-Poisson system. Let us inspect the properties of the 
angle 8. We write the equation (4.4) in the form (2pO')r+(i -Z~*cose)~= 1. In the parametric 
form this equation becomes 

2@' = sin 3, i - 21"'COS O = 009 0 
We find that 

5. = --p Sin 6, 20" = -sin oeosO, 20" = --sin O 009 f 

and finally we obtain 

2%" = --sin 9,. e;z = cos ~3~ + 12 (O, = e + 6) (5.1) 

If we make the body rotate about a fixed horizontal axis coinciding with the axis of inertia 
$1, making use of all energy possesed by the body in real motion, then the equation of motion 

of such a rotation is given by the last relation. We shall also show how to find TV: 

Finally, we write the solution of the initial Euler- Poisson equations in the form 

p = -0' CO.! 'p. 4 = 0’ sin cp + e’, r = Zcp’, 0’ = -p sin 8, 8'= l.i+-l sin 5 
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6. Properties of the motion. The solution obtained makes it easy to establish the 
laws of motion of the real motion of the body. Making f-co we find that ~i-+m,~*og- -1, and 
from this follows p -0. r-0. y'--.O. The precession angle $ is found from the expression v'(y2 -i- 
y'*) = py -t q-t'. As I-%, the precession rate rp' - 0. while the angle 0 itself tends to a fin- 
ite limit. Thus, as I.-CT the motion of the body tends to a limiting motion, namely to the 

rotation about a fixed horizontal axis coinciding with the principal axis of inertia y, ac- 
cording to the law (5.1) of the physical pendulum. 

We shall note another specific feature helpful in describing the pattern of motion. We 

know that cos0 vanishes periodically. When it does vanish, we have 0' = (I. co: 3 1 and hence 
j- 2 0, y -- .i' _7 0. Furthermore the energy integral yields pa+ gz 31,. This means that at these 

particular instances the dynamic symmetry axis L becomes vertical and the angular velocity 

vector, which has at ali these instances the same absolute value, becomes horizontai. Th I !; 
situation is repeated after every period of the pendulum (5.1). 
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