TWO CLASSES OF MOTION OF THE KOVALEVSKAIA TOP*

A. I. DOKSHEVICH

The motions of the Kovalevskaia top/1/ is studied for the case when the ultraelliptical integrals degenerate to the elliptical integrals /2-6/. The Appel'rot terminology is used to investigate the fourth class of simplest motions of the body, and one particular case belonging to the third class. The mathematical apparatus developed by Kovalevskaia is not used directly. An elementary transfonmation of the initial Euler-Poisson equations is used as the basis of the investigation. I'his yields explicit relations connecting all unknown variables with time, and these ir. turn are used to show the general laws governing the motions. The motions can be divided into the oscillatory and asymptotic motions, depending on the initial parameters. The Bobylev-Steklov motion or its particular case of a body rotating about a fixed axis as a physical pendulum, represents the limiting mode for all asymptotir. motions.

1. Transformation of equations. Under the Kovalevskaia conditions the Euler-Poissor equations and their algebraic first integrals are usually written in the form

$$
\begin{align*}
& 2 \frac{d p}{d t}=q r, \quad 2 \frac{d q}{d t}=-r p-\gamma^{\prime \prime}, \quad \frac{d r}{d t}=\gamma^{\prime} \tag{1,1}\\
& \frac{d \gamma}{d t}=\gamma^{\prime} r-\gamma^{*} q, \quad \frac{d \gamma^{\prime}}{d t}=\gamma^{\prime \prime} p-\gamma r, \quad \frac{d \gamma^{\prime \prime}}{d t}=\gamma q-\gamma^{\prime} p \\
& 2\left(p^{2}+q^{2}\right)+r^{2}-2 \gamma=6 l_{1}, 2\left(p \gamma+g \gamma^{\prime}\right)+r \gamma^{\prime}=2 l, \gamma^{2}+\gamma^{\prime 2}+\gamma^{\prime 2}= \tag{1.2}\\
& \left(p^{2}-q^{2}+\gamma\right)^{2}+\left(2 p q+\gamma^{\prime}\right)^{2}=k^{2}
\end{align*}
$$

To start, we carry out the following linear change of the phase variables:

$$
\begin{align*}
& x_{1}=p \sqrt{2}-a, \quad y_{1}=q \sqrt{2}, \quad a_{1}=r / \sqrt{2}, \quad \alpha_{1}=\gamma+a p \sqrt{2}-a^{2} \tag{1.3}\\
& \mathrm{~B}_{1}=\gamma^{*}+a q \sqrt{2}, \quad \quad_{1}=\gamma^{*}+a r / \sqrt{2}, \quad \tau=t / \sqrt{2}
\end{align*}
$$

where a is an arbitrary parameter. In the new variables the system (1.1) and the integrals (I.2) can be written in the form

$$
\begin{align*}
& \frac{d x_{1}}{d \tau}=y_{1} z_{1}, \frac{d y_{1}}{d \tau}=-z_{1} x_{1}-\gamma_{1}, \frac{d z_{1}}{d \tau}=\beta_{1}-a y_{1} \tag{1.4}\\
& \frac{d a_{1}}{d \tau}=2 z_{1} \beta_{1}-\gamma_{1} y_{1} ; \frac{d \beta_{1}}{d \tau}=-2 z_{1} \alpha_{1}+\gamma_{1} x_{1}-a^{2} z_{1}, \frac{d \gamma_{1}}{d \tau}=\alpha_{1} y_{2}-\beta_{1} x_{1} \\
& 1 / 2\left(x_{1}^{2}+y_{1}^{2}\right)+z_{1}^{2}-\alpha_{1}+2 a x_{1}=h_{1},\left(\alpha_{1}+a^{2}\right) x_{1}+\beta_{1} y_{1}+\gamma_{1} z_{1}- \tag{1.5}\\
& 1 / 2^{2} a\left(x_{1}^{2}+y_{1}^{2}\right)=m_{1} ; \alpha_{1}^{2}+\beta_{1}^{2}+\gamma_{1}^{2}+a^{2} \alpha_{1}-1 / a^{2}\left(x_{1}{ }^{2}+y_{1}^{2}\right)=F_{1} \\
& \alpha_{1}\left(x_{1}^{2}-y_{1}^{2}+2 \beta_{1} x_{1} y_{1}-\gamma_{1}^{2}+1 / 4\left(x_{1}^{2}+y_{1}^{2}\right)^{2}+a^{2} x_{1}^{2}=K_{1}\right. \\
& h_{1}=3 l_{1}-1 / a^{2} a^{2} \quad m_{1}=l \sqrt{2}+3 a l_{3}-1 / 2 a^{3}, \quad E_{1}=1+2 a l \sqrt{2}+3 l_{1} a^{2}- \\
& 1 / 2 a^{4}, K_{1}=k^{2}-1-2 a l \sqrt{2}-3 l_{1} a^{3}+1 / 4 a^{4}
\end{align*}
$$

Next we carry out the nonlinear transformation

$$
\begin{aligned}
& x_{2}=-x_{1} M_{1}^{-1}, y_{2}=-y_{1} M_{1}^{-1}, z_{2}=z_{1}+2 \gamma_{1} x_{1} M_{1}^{-1}, \quad \gamma_{2}=\gamma_{1} M_{2}^{-1} \\
& M_{1}=x_{1}^{2}+y_{1}^{2} \neq 0 \\
& \alpha_{2}=-\alpha_{1}+2\left(x_{1}^{2}-y_{1}^{2}\right) \gamma_{1}^{2} M_{1}^{-2}-2 a^{3} x_{1}^{3} M_{1}^{-1} \\
& \beta_{z}=-\beta_{1}+4 x_{1} y_{1} \gamma_{1}^{2} M_{1}^{-2}-2 a^{2} x_{1} y_{1} M_{1}^{-1}
\end{aligned}
$$

The transformation is symmetric and equations (1.4), (1.5) become

[^0]\[

$$
\begin{align*}
& \frac{d x_{2}}{d \tau}=y_{2}=, \frac{d y_{2}}{d \tau}=-z_{2} x_{2}-\gamma_{2}, \frac{d z_{2}}{d \tau}=\beta_{2}-2 m_{1} y_{3}, \quad \frac{d \gamma_{3}}{d \tau}=\alpha_{2} y_{2}-\beta_{2} x_{2} \tag{1.6}\\
& \frac{d x_{2}}{d \tau}=2 z_{2} \beta_{2}-4 K_{1} \gamma_{2} y_{2}, \frac{d \beta_{3}}{d \tau}=-2 z_{2} \alpha_{2}+4 K_{1} \gamma_{2} x_{2}-a^{2} z_{1} \\
& z_{2}^{2}-x_{2}+4 m_{1} x_{2}+2 K_{1} M_{2}=h_{1}, \alpha_{2} x_{2}+\beta_{2} y_{2}+\gamma_{2} z_{2}+a^{2} x_{2}=1 / 2^{a}+m_{1} M_{2} \tag{1.7}\\
& \alpha_{2}\left(x_{2}^{2}-y_{2}^{2}\right)+2 \beta_{2} x_{2} y_{2}-\gamma_{2}^{2}+a^{2} x_{2}^{2}+K_{2} M_{1}^{2}=1 / 4 \\
& \alpha_{2}^{2}+\beta_{2}^{2}+4 K_{1} \gamma_{2}^{2}+a^{2} \alpha_{2}-2 a^{2} K_{1} M_{2}=E_{1}, M_{2}=x_{2}^{2}+y_{2}^{2}
\end{align*}
$$
\]

Let $m_{1}{ }^{2}+K_{1}{ }^{2} \neq 0$. We introduce another parameter $\lambda_{\text {, putting }} \lambda^{2}=4 K_{1}, a \lambda=2 m_{i}$. It is clear that real a and i satisfying the above relations exist. We find that using the transformation

$$
\begin{aligned}
& x_{3} \sqrt{2}=\lambda x_{2}+a, y_{3} \sqrt{2}=\lambda y_{2}, z_{3} / \sqrt{2}=z_{2}, \beta_{3}=\beta_{2}-\alpha \lambda y_{2} \\
& \alpha_{3}=\alpha_{2}-a \lambda x_{2}, \gamma_{3}=\lambda \gamma_{2}-a z_{2}, t_{3}=x \sqrt{2}
\end{aligned}
$$

we convert (1.6) into (1.1). Thus we see that the structure of the above three transformations does not alter the form of the Euler-Poisson equations. Assume that

$$
\begin{equation*}
m_{1}=0, K_{1}=0 \tag{1.8}
\end{equation*}
$$

Since $d K_{1} / d a=-2 m_{1}$, the conditions adopted mean that the polynomial $K_{1}(a)$ has a multiple root. Eliminating a, we obtain a unique constraint imposed on the initial parameters. Using the conditions (1.8) we obtain, from (1.6) (neglecting for simplicity the indices accompanying the variables and denoting the differentiation with respect to τ by a dot)

$$
\begin{align*}
& x=y z, \quad y=-z x-\gamma, z=\beta \tag{1.9}\\
& \alpha^{2}=2 z \beta, \beta=-2 z \alpha-a^{2}, \quad \gamma=\alpha y-\beta x \\
& z^{2}-\alpha=h_{1}\left(\alpha+a^{2}\right) x+\beta y+\gamma^{2}=1 / 2^{2}, \alpha^{2}+\beta^{2}+a^{2} \alpha=E_{1} \\
& \alpha\left(x^{2}-y^{2}\right)+2 \beta x y-\gamma^{2}+a^{2} x^{2}=1 / 4
\end{align*}
$$

2. Integration of the auxilliary system. The phase variables p, \ldots, γ^{*} of the initial equations are known rational functions of the quantities x_{2}, \ldots, p_{p}. Therefore under the conditions (1.8) the problem is reduced to that of finding the solutions of the system (1.9). We note that the set of equations

$$
\begin{equation*}
z^{*}=\beta, \alpha^{*}=2 z \beta, \beta=-2: \alpha-a^{2} z \tag{2.1}
\end{equation*}
$$

forms a closed subsystem. Both its integrals are already known: $z^{3}-\alpha=h_{1}, \alpha^{2}+\beta^{2}-\alpha^{2} z^{2}=1$. Let us clarify the dependence of s, α, β on time. Clearly,

$$
\begin{aligned}
& z^{2}=-z^{4}+\left(2 h_{1}-a^{2}\right) z^{2}+1-h_{1}^{2}=\left(z^{2}-R_{1}\right)\left(R_{2}-z^{2}\right) \\
& R_{1,2}=h_{1}-1 / a^{2} \mp k, R_{1} A_{2}=h_{1}^{2}-1 \\
& h_{1} \leqslant 1,0 \leqslant z^{2} \leqslant R_{1} ; h_{1}>1,0<R_{1} \leqslant z^{2} \leqslant R_{2}
\end{aligned}
$$

For : to be real, it is necessary and sufficient that $R_{2}>0$. In what follows, we shall use a different form of the solution of the subsystem (2.1). Its integrals imply (9 is an auxilliaxy quantity)

$$
\begin{aligned}
& \alpha+1 / 2^{2}=k \cos 2 \varphi, \beta=-k \sin 2 \varphi, \varphi=z, \varphi^{\prime}=-k \sin 2 \varphi \\
& \varphi^{2}=h_{1}-1 / 2^{a^{2}}+k \cos 2 \varphi
\end{aligned}
$$

Let us find x, y and γ, noting the important relation

$$
\ddot{y}-\left(z^{2}+\alpha\right) y=0
$$

We find that the above linear equation is satisfied by the expression

$$
\mathrm{r}=H_{2} \gamma-1 / 2 a z \quad\left(H_{2}=h_{1}-a^{2}\right)
$$

and we have

$$
\begin{align*}
& \Gamma^{2}+H_{2} H_{3} y^{2}=11_{4} h_{1} N, \quad \Gamma \cdot y-\Gamma y=-y^{1} / h_{1} \tag{2,2}\\
& H_{3}=a^{2} h_{1}-1, \quad N=z^{2}-H_{2}
\end{align*}
$$

Let us assume that $N>0$. Then (2.2) yields

$$
\begin{equation*}
N^{2} \eta^{2}+H_{2} H_{3} \eta^{2}=B_{1}^{2} h_{1}, \quad \eta=y N^{-2 / 5} \tag{2,3}
\end{equation*}
$$

Having obtained η, we find

$$
\begin{equation*}
y=\eta N^{1 / \mathrm{z}}, \quad \Gamma=N^{s / 2} \eta^{0}, \quad H_{2} x+1 / 2 a=-\left(H, \beta y+\Gamma \cdot x^{-1}\right. \tag{2.4}
\end{equation*}
$$

Below we give another relationship for finding x, y and i :

$$
\begin{aligned}
& H_{2}^{2} N_{1}^{2}=-\xi^{2}+H_{2} H_{3} \xi^{2}=h_{1}, \quad \xi=\left(x+1 / a_{2} a H_{2}^{-i}\right) N_{1}^{-1,2} \\
& \otimes_{1}=z^{2} . \quad H_{2} H_{2}^{-1}>0, \quad H_{1}=h_{1}{ }^{2}-1
\end{aligned}
$$

We can now give a complete classification of the solutions depending onthe values of

$$
\lambda_{1} N_{1}: 1^{\circ}, H_{2}<0, H_{3}>0 ; 2^{\circ}, H_{2}<0, H_{3}<0 ; 3^{\circ}, H_{2}>0, H_{3}>0 ; 4^{\circ}, H_{2}>0, H_{3}<0, H_{1}<0 ; 5^{\circ}, H_{2}>0, H_{3}<0, H_{1} \therefore 1
$$

(a special case where N and N_{1} have opposite signs); $6^{\circ} . H_{2}=U_{;} ; H_{3}=0: 8^{\circ} . H_{2}=0$.
We have eight distinct cases. Equations (2.3) and (2.5) yield the solutions for the first four cases

$$
\begin{aligned}
& 1^{0} . \quad y=\frac{c \mu}{2 b}\left(z^{2}-H_{2}\right)^{\vdots} \operatorname{sh} \theta, \quad r=\frac{r \mu}{2}\left(z^{2}-H_{2}\right)^{1 / 3} \operatorname{ch} \theta, \quad \theta=\frac{b}{z^{2}-H_{2}}>0 \\
& H_{2} x+\frac{a}{2}=-\frac{\varepsilon \mu}{2 b}\left(z^{2}-H_{2}\right)^{-1}:\left(H_{2} \beta \operatorname{sh} \theta+b \operatorname{ch} \theta\right), \quad!=h_{1}^{d,}, \\
& b=\left|H_{2} H_{3}\right|^{\prime \prime}, \quad \varepsilon= \pm 1 \\
& 2^{\circ} . \quad H_{2}<0, \quad y=\frac{\mu^{2}}{2 b}\left(z^{2}-H_{2}\right)^{2} \cdot \sin \theta, \quad \Gamma=\frac{\mu}{2}\left(z^{2}-H_{2}\right)^{1:} \cdot \cos \theta \\
& H_{2} z+\frac{a}{2}=-\frac{\mu}{2}\left(z^{2}-H_{2}\right)^{\cdots}\left(\frac{H_{2}}{b} \beta \sin \theta+z \cos \theta\right), \quad \theta=\frac{b}{z^{2}-H_{2}}>0
\end{aligned}
$$

3°. The calculations follow those of case 2°, but the sign of H_{1} is different.

$$
\begin{gathered}
4^{\circ} . \quad r+\frac{a}{2 H_{2}}=\frac{\varepsilon \mu}{b}\left(z^{2}-\frac{H_{1}}{H_{2}}\right)^{2 / 4} \operatorname{sh} \theta, \theta-\frac{b z^{2}}{H_{2} z^{2}-H_{1}}>0 \\
y=\frac{\varepsilon \mu}{b}\left(z^{2}-\frac{H_{1}}{H_{2}}\right)^{-1:}\left(b z \frac{\operatorname{ch} \theta}{H_{2}}+\beta \leq \operatorname{sh} \theta\right) \\
\Gamma=\frac{\varepsilon \mu}{b}\left(z^{2}-\frac{H_{1}}{H_{2}}\right)^{-1 ; 1}\left(-\Delta \beta \frac{\operatorname{ch} \theta}{H_{2}}+H_{3^{2}} \frac{\operatorname{sh} \theta}{H_{2}}\right)
\end{gathered}
$$

5°. Under these conditions both N and N_{1} change their sign with time, therefore the equations (2.3) and (2,5) are no longer suitable. We shall use the relations (2.2), noting that

$$
\because-H_{2}=a^{2} \because a=a_{0}^{2} \cos ^{2} f-b_{0}^{2} \sin ^{2} \varphi, \quad a_{0}^{2}=k \div 1 \cdot a^{2}, \quad b_{0}^{2}=k-1 / 2 a^{2}
$$

Let us write the first equation of (2.2) in the parametric form

$$
\begin{aligned}
& \frac{2}{4}\left(A x+\frac{2}{2}\right)=-A_{2} h_{n} \cos \varphi \operatorname{ch} \theta+R_{1} a_{0} \sin \varphi \sin \theta-20\left(a_{0} \cos \varphi \operatorname{ch} \theta+b_{0} \sin \varphi \cdot h \theta\right)
\end{aligned}
$$

The second equation of (2.2) yields $0^{\circ}=-a_{0} b_{0}\left(2 \cdot \mid H_{2}^{\prime 2}\right)^{-1}$. When $H_{1}>0$, the quantity $=$ has a definite sign. We can assign the plus sign to it without loss of generality. We then finc that the quantity 0 is negative and bounded.
6°. In tinis case the relation $\because(\because, a):-0$, holds, and yields rapidly the values of s, y and r
7°. In this case we have the relation $(\cos 4)^{\prime+}\left(E^{2}, \ldots(x) \cos \varphi=u\right.$, and we obtain

8°. The solution is obtained using the elementary methods.

$$
\begin{array}{ll}
L x=a+=a, & L y=\beta u z-1+u^{\prime}, \quad L Y=-u-\beta u=-i-a s \\
u^{2}=u^{2}-1 . & i^{2}=z^{2}\left(a_{1}^{2}-z^{2}\right), \quad a_{1}^{2}=2-a^{2}, \quad L=2\left(a^{2}-h_{1}\right)
\end{array}
$$

3. Investigation of the motion. The solution of (1.9) has been constructed. fy virtue of the symmetrical character of the second transformation and the linearity of the first transformation, we can express the unknown variables p, \ldots, γ^{*} very simply in terms of $r_{2} \ldots \gamma_{2}$. In the case of a quantitative investigation, it is sufficient to note that the expressions are rational functions with unique denominators which never vanish. The motions of the top can be
separated into two types of motion. The first type motions are oscillatory and obey the condition $H_{2} H_{3}>0$. In all the remaining cases $H_{3} H_{3} \leqslant 0$ and the motions are asymptotic. The Bobylev -Stekiov motion determines the limiting mode. Indeed, for the given conditions we find that $x_{2} \rightarrow \infty, y_{2} \rightarrow \infty, \gamma_{z} \rightarrow \infty$, and hence $p \rightarrow$ const, $q \rightarrow 0, \gamma^{\prime \prime}+r p \rightarrow 0$ as $t \rightarrow \infty$, which characterizes only the motion in question. We shall indicate a connection with the classical study of Kovalevskaia. The conditions $m_{1}=0, K_{1}=0$ are the conditions for the roots of the polynomial $\varphi(s)$ to be multiple. The equations $H_{v}=0(v=1,2,3)$ construe the conditions of additional multiplicity of the roots of the polynomial $F(s)$.
4. Second class of motions. We consider the motion of a top under the constraints $l=0,3 i_{1}=k$. This represents according to Appel'rot a particular variant of the simplest third class motions. Starting directly from the Euler-Poisson equations, we introduce three new variables ρ, φ and θ, as follows /7/:

$$
\begin{equation*}
2 p=\rho \sin \theta, \quad r=\rho \cos \theta, \quad \gamma+p^{2}-q^{2}=k \cos 2 \varphi, \quad \gamma^{\prime}+2 p q=-k \sin 2 \varphi \tag{4.1}
\end{equation*}
$$

Calculations yield

$$
\theta^{*}=q+k p^{-1} \sin \theta \sin 2 \varphi, \quad 2 \varphi^{*}=\rho \cos \theta
$$

Using the known integrals, we obtain the required equations for determining Φ and θ

$$
\begin{gather*}
29^{\circ} \cos \theta+\theta^{-2}-3 l_{1} \sin \theta \cos ^{2} \theta+\frac{\left(9 l_{1}^{2}-k^{2}\right)\left(2-1.5 \sin ^{2} \theta\right)}{3 l_{1}+k \cos ^{2 \varphi}}+\frac{2 l}{\rho}=0 \tag{4.2}\\
2 \varphi^{2}=\cos ^{2} \theta\left(3 l_{1}-k+2 k \cos ^{2} \varphi\right) \tag{4.3}
\end{gather*}
$$

When $l=0$ and $3 l_{1}=k$, equation (4.2) can be integrated to yield

$$
\begin{equation*}
\theta^{2}=\cos \theta\left(\varepsilon-3 l_{1} \cos \theta\right), \quad \varepsilon=\text { const } \tag{4.4}
\end{equation*}
$$

Taking the integrals into account, we find that $\varepsilon^{2}=1$.
Let us indicate certain simple, but important inequalities. In the nontrivial case we have $l_{1}>0$. From (4.4) it follows that if $\varepsilon=+1$, then $\cos \theta \geqslant 0$, and if $\varepsilon=-1$, then $\cos \theta \leqslant 0$. Thus $\cos \theta$ retains its sign during the motion and this implies that r has a definite sign. we can put $i \geqslant 0$, i.e. $\varepsilon=+1$, without loss of generality. Let us now find φ. Assume that at some time $\rho=0$. Then $r=0, p=0, \gamma=0$. Such initial conditions characterize a rotation about a fixed axis only, therefore we shall assume that $\rho \neq 0$. Then from $\rho^{2}=4 k \cos ^{2} \varphi$ it follows that $\cos \varphi \neq 0$. We can assume without loss of generality that $\cos \varphi>0$. Further, using the fact that
$r=2 \varphi^{\circ}$, we find that $\varphi^{\prime} \geqslant 0$. It follows that we can simplify (4.3) to obtain

$$
\varphi^{\prime}=\mu \cos \varphi \cos \theta, \mu^{2}=k, \quad \mu>0
$$

The substitution

$$
\cos \varphi=\frac{1}{\operatorname{ch} \tau_{1}}, \sin \varphi=\text { th } \tau_{1}, \quad \tau_{1}=\mu \int \cos 0 d r+\operatorname{const}
$$

is expedient.
5. Solution of the Euler-Poisson system. Let us inspect the properties of the angle θ. We write the equation (4.4) in the form $(2 \mu \theta)^{2}+\left(1-2 \mu^{2} \cos \theta\right)^{2}=1$. In the parametric form this equation becomes

We find that

$$
2 \mu \theta^{\circ}=\sin \sigma, \quad 1-2 \mu^{2} \cos \theta=\cos \sigma
$$

and finally we obtain

$$
\sigma^{\circ}=-\mu \sin \theta, 2 a^{\circ}=-\sin \sigma \cos \theta, \quad 20^{\circ}=-\sin \theta \cos
$$

$$
\begin{equation*}
2 \theta_{1} \cdot \cdot=-\sin \theta_{1}, \quad \theta_{1}{ }^{2}=\cos \theta_{1}+\mu^{2}\left(\theta_{1}=\theta+\sigma\right) \tag{5.1}
\end{equation*}
$$

If we make the body rotate about a fixed horizontal axis coinciding with the axis of inertia y, making use of all energy possesed by the body in real motion, then the equation of motion of such a rotation is given by the last relation. We shall also show how to find τ_{1} :

$$
\tau_{1}=-\frac{1}{3} \ln \Delta+\mu \int \frac{\mu^{2}+\theta_{1}^{2}}{\Delta} d t, \quad \Delta=1+44^{2} \theta_{1}^{2}
$$

Finally, we write the solution of the initial Euler-Poisson equations in the form

$$
p=-\sigma^{\circ} \cos \varphi, \quad q=\sigma^{\circ} \sin \varphi+\theta^{\circ}, \quad r=2 \varphi^{\circ}, \quad \sigma=-\mu \sin \theta, \quad \theta^{*}=\mu^{1 /} \sin 5
$$

$$
\begin{aligned}
& \varphi^{\circ}=\mu \cos \theta \cos \varphi, \quad 2 \mu^{2} \cos \theta=1-\cos \theta \\
& \gamma=\cos \theta\left(\cos ^{2} \varphi+\cos \theta \sin ^{2} \varphi\right)-\sin \theta \sin \theta \sin \varphi \\
& \gamma^{\prime}=-\cos \varphi[\sin \theta \sin \theta+(1-\cos \sigma) \cos \theta \sin \varphi] \\
& \gamma^{\prime \prime}=\cos \theta \sin \theta \sin \varphi+\sin \theta \cos \theta
\end{aligned}
$$

6. Properties of the motion. The solution obtained makes it easy to establish the laws of motion of the real motion of the body. Making $t \rightarrow \infty$ we find that $\tau_{1} \rightarrow \infty, \sin q \rightarrow 1$, and from this follows $p \rightarrow 0, r \rightarrow 0, \gamma^{\prime} \cdots 0$. The precession angle ψ is found from the expression $\psi\left(\gamma^{2}+\right.$ $\left.\gamma^{\prime 2}\right)=p \gamma+q \gamma^{\prime}$. As $t \rightarrow \infty$, the precession rate $\psi^{\prime} \rightarrow 0$, while the angle ψ itself tends to a finite limit. Thus, as $t \ldots \infty$ the motion of the body tends to a limiting motion, namely to the rotation about a fixed horizontal axis coinciding with the principal axis of inertia y, according to the law (5.1) of the physical pendulum.

We shall note another specific feature helpful in describing the pattern of motion. We know that $\cos \theta$ vanishes periodically. When it does vanish, we have $\theta=0, \cos 51$ and hence $r=0 . \gamma=\gamma^{\prime}=0$. Furthermore the energy integral yields $p^{2}+q^{2}:=3 u_{1}$. This means that at those particular instances the dynamic symmetry axis z becomes vertical and the angular velocity vector, which has at ali these instances the same absolute value, becomes norizontal. This situation is repeated after every period of the pendulum (5.1).

REFERENCES

1. KOVALEVSKAIA S.V., Scientific Works. Moscow, Izd. Akad. Nauk SSSR, 1948.
2. GOLUBEV V.V., Lessons on Integrating the Equations of Motion of a Heavy Rigia Body About a Fixed Point. Moscow, GOSTEKHIzDAT, 1958.
3. ARKHANGEL'SKII Iu.A., Analytical Dynamics of a Rigid Body. Moscow, NAUKA, 1977.
4. APPEL'ROT G.G., Not wholly symmetric heavy gyroscopes. In a bood: Motion of a Rigid Boay About a Fixed Point. Moscow-Leningrad, Izd. Akad. Nauk SSSR, 1940.
5. IPATOU A.f., Mution of a Kovalevskaia gyroscope at the boundary of the region of ultracl-
lipticity. Uch. zap. Petrozavodsk. univ. Matem. nauki, Vol.18, No.2، 1971.
6. GORR G.V., KUDRIASHOVA L.V., and STEPANOVA L.A., Classical Problems of Dynamics of a Rigic Body. Kiev. NAUKOVA DUMKA, 1978.
7. DOKSHEVICH A.I., New class of motions of a Kovalevskaia top. Dokl. Akad. Nauk SSSR, Vol. 247, No.6, 1979.

[^0]: *Prikl.Matem. Mekhan., 45,No.4,745-749, 1981

